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Abstract: We study a second order linear differential equation with low-degree polynomial coefficients arising
while studying the Bellman equation for the investment portfolio control problem. Our purpose is to determine
whether there exists a non-trivial solution vanishing at infinity. We prove an existence criterion for such solutions
according to the signs of the coefficients. By the way, the same methods produce an existence criterion for
non-trivial bounded solutions. Instead of a verbose formulation, a united criterion is presented in a table form
admitting simple computer realization.

Key–Words: Linear differential equations, polynomial coefficients, solutions vanishing at infinity, investment
portfolio control problem.

1 Introduction
In this paper we study the asymptotic behavior of so-
lutions to the linear differential equation

y′′ + ay′ + by = 0 (1)

with the polynomial coefficients a(x) = a1x+a0 and
b(x) = b2x

2 + b1x+ b0.
This equation arises while studying the Bellman

equation for the investment portfolio control problem
with assets determined by solving a system of stochas-
tic differential equations. General principles of op-
timal investment portfolio management based on the
dynamic programming method are given, for exam-
ple, by B. Øksendal in [1].

In [2] and [3], T. Bielecki, S. Pliska, and M. Sher-
ris use a model with trends for assets depending on
economic macro-indicators (macrofactors) also sat-
isfying a system of stochastic differential equations.
The authors study the problem of optimal portfolio
management to maximize a so-called risk-sensitive
functional, which includes the value of the interest

rate of the portfolio over long periods and the risk pre-
mium. They established that if the macrofactor system
has a single, so-called main, factor, then the asymp-
totic behavior of the Bellman function is related to that
of solutions to the second-order differential equation
with polynomial coefficients considered in the present
paper.

Important are non-trivial solutions to this equa-
tion vanishing at infinities. Constant-sign solutions of
this type are often called basic states. Conditions of
the existence, uniqueness, and asymptotic behavior of
basic states are studied in a lot of work, see [4] and
the bibliography cited there.

Mainly, the multidimensional case is investigated.
In the one-dimensional case the above questions can
be studied in more detail.

To obtain the results of this paper, we use, in par-
ticular, some methods of [5]–[15]. In some simple
special cases the results coincide with those of [16]
and [17].
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2 Notation

To formulate shortly the results on the problem con-
sidered we need the following notation and definition.

For any non-zero tuple (c0, c1, . . . , cn) we write
(c0, . . . , cn) ≺ 0 (corr. (c0, . . . , cn) � 0) if its first
non-zero component is negative (corr. positive).

We write

(c0, . . . , cn) � 0 (corr. (c0, . . . , cn) � 0)

if either c0 = · · · = cn = 0 or (c0, . . . , cn) ≺ 0 (corr.
(c0, . . . , cn) � 0).

Definition 1 A tuple (c0, . . . , cn) with components
depending on the coefficients aj and bj will be said
to resolve the problem of existence of vanishing at in-
finity solutions to equation (1) if

1) (c0, . . . , cn) � 0 iff equation (1) has a non-trivial
solution vanishing at infinity;

2) (c0, . . . , cn) � 0 iff equation (1) has a non-trivial
solution bounded near infinity;

3) (c0, . . . , cn) ≺ 0 iff all non-trivial solutions to
(1) are unbounded near infinity.

If this holds under some conditions fixing the sign
of the expressionsE1, . . . , Ek depending on aj and bj ,
then we express such a rule by a table of the following
type.

E1 E2 E3 E4

1 + − 0 c0 c1 c2

The left-hand one-column part of the above table
contains just the rule number, for reference.

The central part contains the signs of the related
expressions. The + and− signs stand for strictly pos-
itive and negative values. The empty cell shows no
influence of E4 in the case considered.

The right-hand part contains the components of
the tuple resolving the problem under the conditions
defined in the central part. Logical expressions like
b0 < 0 can be used as components of such a tuple.
They are treated as 1 if true and as 0 if false.

The table can contain several rows for several
rules describing different sign combinations of Ej .

We use several modified Landau symbols (with-
out traditional parentheses to make formulae less
cumbersome).

Thus, the O symbol, instead of traditional O(1),
denotes any function bounded near infinity (O+ if the
function is also bounded below by a positive con-
stant).

The Ô symbol denotes any function having at in-
finity a finite non-zero limit (Ô+ if the limit is posi-
tive).

The O′ symbol can denote the derivative of any
bounded function, i. e. it denotes a function with the
bounded integral (Ô′ if the integral converges). E. g.,
sinx = O′ and xα sinx = Ô′ iff α < 0.

The Õ symbol denotes any function bounded near
infinity, but not tending to 0. E. g., sin

√
x = Õ, but

x−1 sinx 6= Õ.
The following table summarizes the conditions

for these O symbols to replace a function f .

O −∞ < lim
x→x∗

f(x) ≤ lim
x→x∗

f(x) <∞

O+ 0 < lim
x→x∗

f(x) ≤ lim
x→x∗

f(x) <∞

Ô 0 < limx→x∗ |f(x)| <∞

Ô+ 0 < lim
x→x∗

f(x) = lim
x→x∗

f(x) <∞

O′ −∞ < lim
x→x∗

∫ x
x0
f(s) ds

≤ lim
x→x∗

∫ x
x0
f(s) ds <∞

Ô′ −∞ <
x∗∫
x0

f(s) ds <∞

Õ 0 < lim
x→x∗

|f(x)| <∞

Several identical O symbols can denote different
appropriate functions, even in the same expression.

Any inequality followed by the expression ”as
x → ∞” is supposed to hold ultimately, i. e. for all
sufficiently big x.

Any inequality followed by ”as x 99K∞” is sup-
posed to hold at least for a sequence xj →∞.

The domain of an arbitrary function y is de-
noted by dom y. So, y is defined on the interval
(inf dom y, sup dom y).

3 Main results and the first step of
the proof

Theorem 2 The problem of the existence of vanish-
ing solutions to equation (1) is resolved by the tuples
according to the following table.
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a1 b2 b1 a0

1 + 1

2 − −b2 −b1 −b0
3 0 − 1

4 0 + a0 1

5 0 0 − 1

6 0 0 + a0 1

7 0 0 0 + 1

8 0 0 0 0 b0<0

9 0 0 0 − −b0
Before proving the theorem, note that the substi-

tution x 7→ −x transforms equation (1) to itself with
the only difference consisting in changing the signs
of a0 and b1 to the opposite ones. So, we have the
following immediate corollary.

Corollary 3 The problem of the existence of vanish-
ing at −∞ solutions to equation (1) is resolved by the
tuples according to the following table.

a1 b2 b1 a0

1 + 1

2 − −b2 b1 −b0
3 0 − 1

4 0 + −a0 1

5 0 0 + 1

6 0 0 − −a0 1

7 0 0 0 − 1

8 0 0 0 0 b0<0

9 0 0 0 + −b0
To prove the theorem, we use the substitution

y(x) = z(x) exp g(x) with

g(x) = −1

2

∫ x

0
a(ξ)dξ = −a1x

2

4
− a0x

2
(2)

to transform equation (1) into

z′′(x) = P (x) z(x) (3)

with

P (x) =
a′(x)

2
+
a(x)2

4
− b(x) =

2∑
j=0

Pj x
j ,

P2 =
a21
4
− b2, (4)

P1 =
a1a0
2
− b1, (5)

P0 =
a1
2

+
a20
4
− b0. (6)

3.1 The case P = 0

Consider the most simple case of the equation (3) with
P = 0, i. e. P2 = P1 = P0 = 0. Equations (3) and
then (1) can be resolved explicitly:

z(x) = C0 + C1x,

y(x) = (C0 + C1x) exp

(
−a1x

2

4
− a0x

2

)
.

The last expression shows that a non-trivial vanishing
solution to (1) exists iff either a1 > 0 or a0 > 0 = a1.
If neither of these conditions is satisfied, then a non-
trivial bounded solution exists iff a1 = a0 = 0. So, if
P = 0, the problem is resolved by the tuple (a1, a0).
This can be shown by the following table.

P2 P1 P0

1 0 0 0 a1 a0

4 The case (P2, P1, P0) � 0

In this case ultimately P (x) > 0 and P ′(x) ≥ 0. So,
we consider the behavior of solutions to (3) only for x
with the above inequalities satisfied.

Put p(x) =
√
P (x) > 0 and notice that

p′(x)

p(x)
=
P ′(x)

2P (x)
=
x−1 degP

2
+Ox−2,

whence

p′(x) = x−1p(x)

(
degP

2
+Ox−1

)
.

Any non-trivial solution z to (3), if vanishing at
some point x0, must be strictly monotone on (x0,∞)
and have a constant sign there. So, we will consider
only solutions positive near ∞. Immediate calcula-
tions show that a positive function z is a solution to
(3) iff the function w = (ln z)′ is a solution to the
equation

w′ = p2 − w2. (7)

Note that contrary to equation (3) with all solutions
extensible onto the whole axis (−∞,∞), equation (7)
has both solutions defined on (−∞,∞) and solutions
unbounded near a finite point.

Indeed, the first type solutions correspond to
globally positive solutions to equation (3), which do
exist (e. g. all those with initial data z(x0) > 0,
z′(x0) = 0).

The second type solutions correspond to the pos-
itive parts of non-trivial, but vanishing at some finite
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point x0 solutions to equation (3). If z′(x0) > 0, then
w(x)→ +∞ as x→ x0 = inf domw. If z′(x0) < 0,
then w(x)→ −∞ as x→ x0 = supdomw.

Because of the uniqueness theorem, if w1 and
w2 are two maximally extended solutions to equa-
tion (7) and the inequality w1 > w2 holds at some
point, then it also holds at any point where these
functions are defined. Hence, if w1(x) → −∞ as
x → sup domw1 < ∞, then w2(x) → −∞ as
x→ sup domw2 ≤ sup domw1 <∞.

Further, if w3 is another solution to (7) having at
some point x0 a value sufficiently close to w1(x0),
then w3(x) → −∞ as x → sup domw3 < ∞. In-
deed, consider the corresponding maximally extended
solutions z1 and z3 to (3) with z1(x0) = z3(x0) = 1.
The solution z1 vanishes at sup domw1 > x0, surely
with the negative derivative, and becomes negative
itself at some point x1 > sup domw1. Then, by
continuity, z3(x1) < 0 whenever the value z′3(x0) is
close enough to z′1(x0). Hence, z3 vanishes at some
point x3 ∈ (x0, x1), which is just sup domw3, and
w3(x)→ −∞ as x→ x3.

Due to the above monotony and continuity, we
can introduce the function ŵ as the least maximally
extended solution to (7) defined near∞.

Note that ŵ(x) < 0 as x → ∞. Indeed, if
ŵ(x0) ≥ 0, then, because of (7), ŵ > 0 on (x0,∞).
By continuity, any solution w to (7) with the value
w(x0) sufficiently close to ŵ(x0) is also positive as
x→∞, even if w(x0) < ŵ(x0). But this contradicts
to the definition of ŵ.

The function ŵ, or rather R defined by

R(x) = g(x) +

x∫
x0

ŵ(s)ds, (8)

appears to be crucial for our problem in the case
(P2, P1, P0) � 0:

if R(x)→ −∞ as x→∞, then equation (1) has
a vanishing at infinity solution equal to expR;

ifR(x) is bounded near infinity, then equation (1)
has a bounded solution equal to expR;

if R(x)→ +∞ as x→∞, then equation (1) has
no bounded solution.

4.1 The subcase P2 > 0

Put λ2 =
√
P2 > 0. Then

p(x) = xλ2

(
1 +

P1

λ22x
+

P0

λ22x
2

)1/2

= xλ2 +
P1

2λ2
+

P0

2λ2x
− P 2

1

8λ32x
+
O

x2

= xλ2 +
P1

2λ2
+Ox−1,

p′(x) = λ2 +Ox−2 < λ2 + 1, x→∞.

For any constant k we define the function wk by

wk(x) = −p(x)−
x−1

2
+ kx−2.

Suppose ŵ(x) > wk(x) as x 99K∞. Then at the
points with the last inequality satisfied we have

(ŵ − wk)′ = p2 − ŵ2 − w′k > p2 − w2
k − w′k

= p2 − p2 − x−1p+ 2kx−2p+Ox−2 + p′

= −
(
λ2 +

P1

2λ2
x−1 +Ox−2

)
+ 2kλ2x

−1 + p′

= x−1
(
2kλ2 −

P1

2λ2
+Ox−1

)
= Ô+x

−1

whenever k > κ =
P1

4λ22
. Hence either ŵ becomes

positive or, due to the above inequalities, ŵ − wk is
ultimately increasing and ŵ is ultimately greater than
wk as well as any other solution to (7) sufficiently
close to ŵ at some sufficiently big x. This contradicts
to the minimum property of ŵ.

Now suppose ŵ(x) < wk(x) as x 99K ∞. The
similar estimates show that (ŵ − wk)′ < −Ô+x

−1

whenever k < κ. Hence

ŵ − wk = w + p+
x−1

2
− kx−2 → −∞

and ultimately ŵ+p < −
√
λ2 + 1. Consider the pos-

itive function η = −p− ŵ −
√
λ2 + 1. We have(

1

η

)′
=
−η′

η2
=
p′ + p2 − ŵ2

η2

=
p′ + p2 −

(
p+
√
λ2 + 1 + η

)2
η2

<
λ2 + 1 + p2 − p2 − λ2 − 1− η2

η2
= −1,

whence
1

η
vanishes at some finite point x∗ and η, as

well as ŵ, is unbounded near x∗. This is impossible
for the function ŵ defined near∞.
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The two above suppositions denied show that

ŵ = wκ + Ôx−2

= −λ2x−
P1

2λ2
+ x−1

(
P 2
1

8λ32
− P0

2λ2
− 1

2

)
+O′,

whence, taking into account (2), (4)–(6), and (8), we
obtain

R′ = g′ + ŵ = ŵ − a1x

2
− a0

2

= O′ − x a1 + 2λ2
2

−
(
a1a0 − 2b1

4λ2
+
a0
2

)
− x−1

(
1

2
− (a1a0 − 2b1)

2

32λ32
+

2a1 + a20 − 4b0
8λ2

)
.

This gives a tuple resolving our problem with P2 > 0:(
a1 + 2λ2,

a1a0 − 2b1 + 2a0λ2,

16λ32 − (a1a0 − 2b1)
2 + 4λ22

(
2a1 + a20 − 4b0

) )
.

It looks rather cumbersome. So, we will try to sim-
plify it depending on sgn a1.

While simplifying, we may replace any com-
ponent by an expression having the same sign un-
der the condition that all previous components equal
zero. Besides, if a component cannot equal zero in
the case considered, then we may remove all compo-
nents following it. E. g., (c0, c1, c0 + c1 − 12, 13) ∼
(c0, c1,−1).

If P2 > 0 and a1 ≥ 0, then the first component of
the tuple obtained is positive and we obtain the next
two rules shown in the following table.

P2 a1

2 + + 1

3 + 0 1

Now consider the case with P2 > 0 and a1 < 0.
We have the following sequence of equivalent in-
equalities:

a1 + 2λ2 ≶ 0 ⇐⇒
√
a21 − 4b2 ≶ −a1

⇐⇒ a21 − 4b2 ≶ a21 ⇐⇒ −b2 ≶ 0.

So, the first component of the tuple obtained may be
replaced by −b2.

If b2 = 0 and therefore 2λ2 = −a1, then the sec-
ond component is equal to −2b1 and may be replaced
by −b1.

If b2 = b1 = 0, then the third component equals

16λ32 − (a1a0)
2 + 4λ22

(
2a1 + a20 − 4b0

)
= −2a31 − (a1a0)

2 + a21
(
2a1 + a20 − 4b0

)
= −4a21b0

and may be replaced by −b0.
Thus, the tuple is equivalent to (−b2,−b1,−b0)

and we obtain the next rule.

P2 a1

4 + − −b2 −b1 −b0

4.2 The subcase P2 = 0, P1 > 0

Put λ1 =
√
P1. Then

p = x1/2λ1

(
1 +

P0x
−1

λ21

)1/2

= x1/2λ1 +
P0x

−1/2

2λ1
+Ox−3/2

p′ =
λ1x

−1/2

2
+Ox−3/2 < 1, x→∞.

Similarly to the previous case, consider the function

wk(x) = −p(x)−
x−1

4
+ kx−3/2

and show that if ŵ ≷ wk as x 99K∞, then ultimately
(ŵ − wk)′ ≷ 2kλ1x

−1 + Ox−3/2 ≷ 0 and ŵ ≷ wk
whenever k ≷ 0.

The case ŵ > wk contradicts to the minimum
property of ŵ. In the case ŵ < wk we have(

1

−p− ŵ − 1

)′
< −1,

which invokes unboundedness of ŵ near a finite x.
So,

ŵ = w0 +Ox−3/2

= −λ1x1/2 −
P0x

−1/2

2λ1
− x−1

4
+O′,

whence

R′ = ŵ − a1x

2
− a0

2

= −a1x
2
− λ1x1/2 −

a0
2

+Ox−1/2.

This yields a tuple resolving our problem with P2 =
0 and P1 > 0, which gives, after simplification, the
following rule.

P2 P1

5 0 + a1 1
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4.3 The subcase P2 = P1 = 0, P0 > 0

In this case all solutions to equation (7) can be found
explicitly. One of them is w ≡ −λ0 with λ0 =

√
P0.

All solutions less than −λ0 has the form

w = λ0 cothλ0(x− x∗)

and tend to −∞ as x→ x∗− 0. Hence ŵ = −λ0 and

R′ = −a1x
2
− a0

2
− λ0

= −a1x
2
− a0

2
−
√
a1
2

+
a20
4
− b0.

This gives a tuple resolving our problem with P0 > 0,
P2 = P1 = 0, namely(

a1, a0 +
√
2a1 + a20 − 4b0

)
,

which is equivalent to(
a1, a0 +

√
a20 − 4b0

)
.

Its further simplification depends on sgn a0.
If a0 ≥ 0, then the second component is always

positive in the case considered.
If a0 < 0, then the inequality

a0 +
√
a20 − 4b0 ≷ 0

is equivalent to the inequality −b0 ≷ 0.
Thus, we obtain three new rules as shown in the

following table.

P2 P1 P0 a0

6 0 0 + + a1 1

7 0 0 + 0 a1 1

8 0 0 + − a1 −b0

5 The case (P2, P1, P0) ≺ 0

In this case we may assume P and P ′ to be negative
and put

Q(x) = −P (x) =
2∑
j=0

Qj x
j > 0

with

Q2 = b2 −
a21
4
, (9)

Q1 = b1 −
a1a0
2

, (10)

Q0 = b0 −
a1
2
− a20

4
. (11)

For any non-trivial solution z to (3) there exist
defined near infinity continuous functions

S = z2 +
(z′)2

Q
> 0,

σ = lnS,

and ϕ and such that

z =
√
S sinϕ,

z′√
Q

=
√
S cosϕ. (12)

Since equation (3) can be written now as

z′′ +Qz = 0, (13)

we have

S′ = 2zz′ − 2z′Qz

Q
− (z′)2Q′

Q2
= −SQ

′ cos2 ϕ

Q
,

σ′ = −Q
′ cos2 ϕ

Q
,

ϕ′ =

(
arctan

z
√
Q

z′

)′

=
(z′)2

√
Q+

1

2
zz′Q′Q−1/2 + z2Q3/2

SQ

=
√
Q cos2 ϕ+

SQ′ sinϕ cosϕ

2SQ
+
√
Q sin2 ϕ

=
√
Q+

Q′ sinϕ cosϕ

2Q
.

Note that near the points with z′ = 0 the same formula
for ϕ′ can be also obtained by using

ϕ′ =

(
arccot

z′

z
√
Q

)′
.

For the cases with ultimately positive ϕ′ we can treat
ϕ as an independent variable and write

dσ

dϕ
= − 2Q′ cos2 ϕ

2Q3/2 +Q′ sinϕ cosϕ

= − 1 + cos 2ϕ

2Q3/2 (Q′)−1 + sinϕ cosϕ.

5.1 The subcase Q2 > 0

Put ω2 =
√
Q2. Then Q′ = 2ω2

2x+Q1 and

√
Q = xω2

(
1 +

Q1

ω2
2x

+
Q0

ω2
2x

2

)1/2

= xω2 +
Q1

2ω2
+Ox−1,
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whence ϕ′ =
√
Q +

Q′ sinϕ cosϕ

2Q
= ω2x + O and

ϕ =
ω2x

2

2
+ Ox. Thus, ϕ → ∞ and ϕ′ > 0 as

x → ∞, which, according to (12), means that any
non-trivial solution z to (3) is oscillatory and ϕ may
be treated as an independent variable related to x by

x = Ôϕ1/2, ω2x
2 = 2ϕ+Ox = 2ϕ+Oϕ1/2.

Further, we have

Q3/2
(
Q′
)−1

= ω3
2x

3
(
2ω2

2x
)−1 (

1 +Ox−1
)

= ϕ
(
1 +Oϕ−1/2

)
,

whence

dσ

dϕ
= − 1 + cos 2ϕ

2ϕ
(
1 +Oϕ−1/2

)
= − 1

2ϕ
− cos 2ϕ

2ϕ
+Oϕ−3/2,

σ = − lnϕ

2
+ Ô,

S = eσ = Ô+ϕ
−1/2 = Ô+x

−1,

z2 = Õx−1, z = Õx−1/2.

So, any non-trivial solution y to (1) satisfies

y(x) = Õx−1/2 exp

(
−a1x

2

4
− a0x

2

)
= Õ exp

(
−a1x

2

4
− a0x

2
− lnx

2

)
,

which shows the tuple (a1, a0, 1) to resolve our prob-
lem if Q2 = −P2 > 0 and we obtain another related
rule.

P2

9 − a1 a0 1

5.2 The subcase Q2 = 0, Q1 > 0

Put ω1 =
√
Q1. Then Q′ = ω2

1 and

√
Q = ω1x

1/2

√
1 +

Q0

ω2
1x

= ω1x
1/2
(
1 +Ox−1

)
,

whence

ϕ′ =
√
Q+

Q′ sinϕ cosϕ

2Q
= ω1x

1/2 +Ox−1/2

and ϕ =
2ω1x

3/2

3
+Ox1/2. This shows again that any

non-trivial solution z to (3) is oscillatory and ϕ may

be treated as an independent variable related to x by
x = Ôϕ2/3 and

2ω1x
3/2 = 3ϕ+Ox1/2 = 3ϕ+Oϕ1/3.

Further, we have

2Q3/2
(
Q′
)−1

= 2ω3
1x

3/2 · 1

ω2
1

(
1 +Ox−1

)
= 3ϕ

(
1 +Oϕ−2/3

)
,

whence

dσ

dϕ
= − 1 + cos 2ϕ

2Q3/2 (Q′)−1 + sinϕ cosϕ

= − 1 + cos 2ϕ

3ϕ+Oϕ1/3

=

(
− 1

3ϕ
− cos 2ϕ

3ϕ

)(
1 +Oϕ−2/3

)
= − 1

3ϕ
− cos 2ϕ

3ϕ
+Oϕ−5/3,

σ = − lnϕ

3
+ Ô,

S = eσ = Ô+ϕ
−1/3 = Ô+x

−1/2,

z2 = Õx−1/2, z = Õx−1/4.

So, any non-trivial solution y to (1) satisfies

y(x) = z(x) exp

(
−a1x

2

4
− a0x

2

)
= Õ exp

(
−a1x

2

4
− a0x

2
− lnx

4

)
and we obtain another related rule.

P2 P1

10 0 − a1 a0 1

5.3 The subcase Q2 = Q1 = 0, Q0 > 0

If Q ≡ Q0, then each non-trivial solution z to (3),
which can be found explicitly as a trigonometrical
function, satisfies z = Õ. Hence each non-trivial so-
lution y to (1) satisfies

y(x) = Õ exp

(
−a1x

2

4
− a0x

2

)
and we obtain one more rule.

P2 P1 P0

11 0 0 − a1 a0
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6 Common simplification

Now the rules obtained in previous sections can be put
all together into a single table showing, in all possible
cases, whether equation (1) has non-trivial solutions
vanishing at infinity or bounded.

P2 P1 P0 a1 a0

1 0 0 0 a1 a0
2 + + 1

3 + 0 1

4 + − −b2 −b1 −b0
5 0 + a1 1

6 0 0 + + a1 1

7 0 0 + 0 a1 1

8 0 0 + − a1 −b0
9 − a1 a0 1

10 0 − a1 a0 1

11 0 0 − a1 a0

It differs from the smaller table in the statement of
Theorem 2, which needs no calculation of P2, P1, P0.
So, we begin common simplification of the rules.

First, we consider three copies of the above ta-
ble for three signs of a1 and simplify them separately.
The condition columns related to a1 are filled with the
corresponding signs. If the conditions of a rule con-
tradict to the case considered, then the rule is removed
from the related table (this can be seen by numbers
skipped). In the case a1 = 0, the components equal to
a1 are removed from the resolving tuples. For a1 > 0
and a1 < 0, the components equal to a1 are replaced
by 1 and −1 while all the following components of
the tuple are removed. Thus, we obtain three tables.

P2 P1 P0 a1 a0

1 0 0 0 + 1

2 + + 1

5 0 + + 1

6 0 0 + + + 1

7 0 0 + + 0 1

8 0 0 + + − 1

9 − + 1

10 0 − + 1

11 0 0 − + 1

P2 P1 P0 a1 a0

1 0 0 0 0 a0
3 + 0 1

5 0 + 0 1

6 0 0 + 0 + 1

7 0 0 + 0 0 1

8 0 0 + 0 − −b0
9 − 0 a0 1

10 0 − 0 a0 1

11 0 0 − 0 a0

P2 P1 P0 a1 a0

1 0 0 0 − −1
4 + − −b2 −b1 −b0
5 0 + − −1
6 0 0 + − + −1
7 0 0 + − 0 −1
8 0 0 + − − −1
9 − − −1

10 0 − − −1
11 0 0 − − −1

One can see from the first of these tables that a
vanishing non-trivial solution to (1) exists whenever
a1 > 0. This can be written by a single row in the
table. The third table can be replaced by three non-
header rows corresponding to different signs of P2.
The combined renumerated table looks like follows.

P2 P1 P0 a1 a0

1 + 1

2 0 0 0 0 a0
3 + 0 1

4 0 + 0 1

5 0 0 + 0 + 1

6 0 0 + 0 0 1

7 0 0 + 0 − −b0
8 − 0 a0 1

9 0 − 0 a0 1

10 0 0 − 0 a0

11 − − −1
12 0 − −1
13 + − −b2 −b1 −b0

Under the conditions of rules 11 and 12, i. e.,

a1 < 0 and P2 =
a21
4
− b2 ≤ 0,
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the coefficient b2 must be positive. Hence the tuple
(−1) is equivalent, under these conditions, to (−b2)
and even to (−b2,−b1,−b0). Such a replacement
does not look like a simplification, but it allows to re-
place rules 11–13 by the one with the last mentioned
tuple and the only condition a1 < 0.

Further, if a1 = 0, which is a common condition
of rules 2–10, then P2 = −b2 and P1 = −b1. Other
rules, after the previous simplification, ignore P2 and
P1. So, we may replace, in the table header, P2 (corr.
P1) by b2 (corr. b1) and, in the table body, all non-zero
signs in the related columns by the opposite ones.

b2 b1 P0 a1 a0

1 + 1

2 0 0 0 0 a0
3 − 0 1

4 0 − 0 1

5 0 0 + 0 + 1

6 0 0 + 0 0 1

7 0 0 + 0 − −b0
8 + 0 a0 1

9 0 + 0 a0 1

10 0 0 − 0 a0

11 − −b2 −b1 −b0

Now consider rules 2, 5–7, and 10. Note that, if
a1 = b2 = b1 = 0 (their common condition), then (1)
becomes a linear equation with constant coefficients
and has non-trivial solutions vanishing at infinity iff
the real part of at least one of the characteristic roots

−a0
2
±
√
a20
4
− b0

is negative. This always holds if a0 > 0. If a0 ≤ 0,
then this holds iff b0 < 0.

As for non-trivial bounded solutions, they exist iff
the real part of at least one characteristic root is non-
positive. So, concerning the situation when among
the non-trivial solutions there is no vanishing one, but
bounded solutions do exist, it is possible if either a0 =
0, b0 ≥ 0 or a0 < 0, b0 = 0.

Thus, the rules shown in the table

b2 b1 a1 a0

1* 0 0 0 + 1

2* 0 0 0 0 b0<0

3* 0 0 0 − −b0

may replace, in the previous one, rules 2, 5–7, and 10
producing the following table.

b2 b1 P0 a1 a0

1 + 1

1* 0 0 0 + 1

2* 0 0 0 0 b0<0

3* 0 0 0 − −b0
3 − 0 1

4 0 − 0 1

7 + 0 a0 1

8 0 + 0 a0 1

11 − −b2 −b1 −b0

After the above simplification, all the rules ignore
sgnP0. Hence the column related may be removed.
Besides, according to the great influence of sgn a1, the
column related may be chosen as the first condition
one. Finally, by a permutation of the rows, one can
simplify the if-else structure of a computer program
realizing the table.

a1 b2 b1 a0

1 + 1

11 − −b2 −b1 −b0
3 0 − 1

7 0 + a0 1

4 0 0 − 1

8 0 0 + a0 1

1* 0 0 0 + 1

2* 0 0 0 0 b0<0

3* 0 0 0 − −b0

This table, after renumeration, coinsides with the table
in the statement of Theorem 2.

7 How does it work?

Thus, we have obtained the resulting table of rules and
proved Theorem 2. Now, given the coefficients a0,
a1, b0, b1, b2, how will we get to know whether equa-
tion (1) has a solution vanishing at infinity? And what
about solutions bounded as x→∞?

The answer is generated as follows. Hereafter, by
solutions we mean only non-trivial ones. Their van-
ishing and boundedness are supposed at/near infinity.

First, we look at a1. If it is positive, then, ac-
cording to rule 1 from the above table and its ”very
positive” tuple (1), there exists a solution vanishing at
infinity (and therefore bounded).

If a1 is negative, then, according to rule 11 (the
next one), the answer depends on the leading non-zero
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coefficient of the polynomial b(x) = b2x
2+ b1x+ b0.

Namely, if this coefficient is positive (i. e. b2 > 0, or
b1 > 0 = b2, or b0 > 0 = b2 = b1), then there is no
bounded solution to (1). If negative, then there exists
a vanishing solution. If all bj equal 0, then there exists
a bounded solution, but no vanishing one.

Now the answer to the question posed is clear for
a1 6= 0. The following considerations concern the
case a1 = 0.

If b2 < 0, then, according to rule 3, there exists
a vanishing solution. According to rule 7, the same is
true if b2 > 0 and a0 ≥ 0, but there is no bounded
solution if b2 > 0 and a0 < 0.

We have not considered a half of all possible com-
binations proposed by the table (those with a1 = b2 =
0). But our partial explanation took more place than
the whole table of rules. So, we cease our considera-
tions still hoping the algorythm is clear enough.

Remind that in rule 2*, according to our notation,
the tuple consists of a single 1 if b0 is negative (there-
fore providing the existence of vanishing solutions). If
b0 is non-negative, then the tuple consists of a single
0 providing the existence of bounded solutions, which
cannot vanish at infinity.

8 Conclusion

The technique proposed in this paper can help to in-
vestigate more accurately the profitability of the in-
vestment portfolio in the model of Bielecki and Pliska.
Namely, the problem of determining the profitability
is related to determining the eigenvalue of a spectral
problem for an ordinary differential equation on R
with polynomial or piecewise polynomial coefficients.
These coefficients are picewise linear/quadratic under
some restrictions on the shares of assets in the port-
folio. By using the technique developed in this paper
for analysis of the asymptotic behavior of solutions to
a second-order equation with polynomial coefficients,
one can estimate the magnitude of the fall in prof-
itability due to the restrictions mentioned.

References:

[1] Øksendal B., Stochastic Differential Equations,
New-York, Springer-Verlag Heidelberg, 2000.

[2] Bielecki T., Pliska S., Risk-sensitive dynamic
asset management, J. Appl. Math. and Optimiz.
Math. Nachr. 1999. 37. 337–360.

[3] Bielecki T., Pliska S., Sherris M., Risk sensitive
asset allocation, J. Econ. Dynamics and Contr.,
2000. 24. 1145–1177.

[4] Pyatnitskii A. L., Shamaev A. S., On the asymp-
totic behavior of eigenvalues and eigenfunctions

of non-self-adjoint elliptic operators, Journal of
Mathematical Sciences, Vol. 120, No. 3, 2004.

[5] Astashova I., Qualitative properties of solutions
to quasilinear ordinary differential equations (in
Russian), in: I. V. Astashova (ed.), Qualitative
Properties of Solutions to Differential Equations
and Related Topics of Spectral Analysis: sci-
entific edition, UNITY-DANA, Moscow (2012),
22–290.

[6] Astashova I. V., Asymptotic Classification of
Solutions of Singular 4th-Order EmdenFowler
Equations with a Constant Negative Potential,
J. Math. Sci. (2018) 234:385. (Translated from
Trudy Seminara imeni I. G. Petrovskogo, No. 31,
pp. 3-21, 2016.)

[7] Astashova I. V., Asymptotics of Oscillating So-
lutions to Equations with Power Nonlinearities,
J. Math. Sci. (2018) 230:651.

[8] Astashova I., On asymptotic classification of
solutions to fourth-order differential equations
with singular power nonlinearity. Mathematical
Modeling and Analysis, 21(4):502-521, 2016.

[9] Astashova I. V., On quasi-periodic solutions to
a higher-order Emden-Fowler type differential
equation. Boundary Value Problems, 174:1-8,
2014.

[10] Astashova I. V., On qualitative properties and
asymptotic behavior of solutions to higher-order
nonlinear differential equations. WSEAS Trans-
actions on Mathematics, 16(5):39-47, 2017.

[11] Astashova I. V., On asymptotic classification
of solutions to nonlinear regular and singu-
lar third- and fourth-order differential equations
with power nonlinearity. In Differential and Dif-
ference Equations with Applications, vol. 164 of
Springer Proceedings in Mathematics & Statis-
tics, pp. 191-204. Springer International Pub-
lishing, 2016.

[12] Astashova I. V., On asymptotic equivalence of
n-th order nonlinear differential equations. Tatra
mountains mathematical publications, 63:3138,
2015.

[13] Astashova I. V., On asymptotic behavior of so-
lutions to a quasi-linear second order differ-
ential equations, Functional Differential Equa-
tions, 16(1):93-115, 2009.

[14] Korchemkina T., On the behavior of solutions
to second-order differential equation with gen-
eral power-law nonlinearity, Memoirs on Dif-
ferential Equations and Mathematical Physics.
(2018) Vol. 73, pp. 101–111.

[15] Dulina K. M., On Asymptotic Behavior of Solu-
tions to the Second-Order Emden–Fowler Type

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Alexander Astashov, Irina Astashova, Aleksey Shamaev

E-ISSN: 2224-2856 418 Volume 13, 2018



Differential Equations with Unbounded Neg-
ative Potential, Functional Differential Equa-
tions, 2016. Vol. 23. No 1–2. pp. 3–8.

[16] Bellman R., Stability theory of differential equa-
tions, McGRAW-HILL Book Company Inc.,
New-York–Toronto–London, 1953.

[17] Kiguradze I. T., Chanturia T. A., Asymptotic
Properties of Solutions of Nonautonomous Ordi-
nary Differential Equations, Kluver Academic
Publishers, Dordreht-Boston-London, 1993.

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Alexander Astashov, Irina Astashova, Aleksey Shamaev

E-ISSN: 2224-2856 419 Volume 13, 2018




